

Katarina Borkovic

Laboratory for Endocrine Disrupters and Signaling (ENDOS)

Dept. of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad, Serbia

katarina.borkovic@dbe.uns.ac.rs

Why look beyond chronic exposure: the case of short-term PFOA exposure

Perfluorooctanoic acid (PFOA) is a synthetic chemical belonging to the class of PFAS, a highly environmentally persistent and bioaccumulative group of substances

Structure of perfluorooctanoic acid (PFOA)

- Resistant to degradation, accumulates in human tissues
- Linked to immunotoxicity, hepatotoxicity, endocrine disruption, and carcinogenic risk
- Acute cellular effects remain unclear

The Pipeline

Assessed endpoints:

- Metabolic activity alamarBlue™ assay
- Cell death pathways Annexin V/propidium iodide flow cytometry
- Cell cycle distribution Propidium iodide flow cytometry
- Intracellular reactive oxygen species (ROS) – Dichlorofluorescein fluorescence
- **Lipid peroxidation** Thiobarbituric acid reactive substances (TBARS) assay
- Neutral lipid accumulation Oil Red O staining

Short-term PFOA exposure does not affect metabolic activity in HepG2 cells

Short-term PFOA exposure reduces cell viability and promotes necrosis in HepG2 cells

Annexin V-FITC

Annexin V-FITC

10 100

10 100

Short-term PFOA exposure does not affect cell cycle progression in HepG2 cells

Propidium-iodide

Propidium-iodide

Short-term PFOA exposure elevates intracellular ROS levels in HepG2 cells

Short-term PFOA exposure does not increase lipid peroxidation in HepG2 cells

Short-term PFOA exposure does not affect neutral lipid accumulation in HepG2 cells

Key Findings

ROS

No immediate disruption of lipid metabolism or proliferation observed

Provides a snapshot of acute toxicity and baseline for future long-term studies

Ackwnoledgements:

ENDOS Laboratory

Dunja Kokai

Bojana Stanic

Nebojsa Andric

This study was supported by Science Fund of the Republic of Serbia, #7010, Integration of Biological Responses and PBTK Modeling in Chemical Toxicity Assessment: A Case Study of Perfluorooctanoic Acid (PFOA) – **ToxIN**

Katarina Borkovic

Laboratory for Endocrine Disrupters and Signaling (ENDOS)

Dept. of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad, Serbia

katarina.borkovic@dbe.uns.ac.rs